metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Shan Li,^a Yong-Jian Zhao,^b Feng-Bo Xu,^a Hai-Bin Song^a and Zheng-Zhi Zhang^a*

^aState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China, and ^bILE Pharmaceuutical Materials Co. Ltd, Tianjin, People's Republic of China

Correspondence e-mail: nkpengli@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.009 Å R factor = 0.035 wR factor = 0.069 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

{2-[*N*-Benzyl-*N*-(diphenylphosphinomethyl)amino]pyridine}tricarbonylchlororhenium(I)

In the mononuclear title compound, $[\text{ReCl}(C_{25}H_{23}N_2P)-(\text{CO})_3]$, the Re^I atom is six-coordinated by N and P atoms of a large-bite *P*,*N*-bidentate ligand, three carbonyl ligands and one Cl atom in a slightly distorted octahedral geometry. The *P*,*N*-bidentate ligand and the Re^I atom form a six-membered ring.

Comment

Over the past few decades, tertiary phosphines have attracted considerable interest, especially as important ligands in coordination chemistry (Zhang & Cheng, 1996). To obtain cluster compounds, rhenium carbonyl complexes are used as starting materials along with hydrogen and hydrides (Saillant *et al.*, 1970; Bau *et al.*, 1967). Previously, we have reported the crystal structures of some heterobimetallic $Pt^{II}-M^{I}$ (M = Cu, Ag) macrocyclic complexes with a large-bite *P*,*N*-bidentate ligand, including 2-[*N*-benzyl-*N*-(diphenylphosphinomethyl)amino]-pyridine (Li *et al.*, 2003). Now we report here the structure of the title compound, (I), a new Re^I complex with the above-cited ligand.

As shown in Fig. 1, the Re^I atom is six-coordinated by N and P atoms of the large-bite *P*,*N*-bidentate ligand, three carbonyl ligands and one Cl atom in a slightly distorted octahedral geometry. The P and N atoms and two carbonyl ligands are in the equatorial plane, and the P and N atoms are in *cis* positions. The third carbonyl ligand and the Cl atom are in *trans* positions with respect to the equatorial plane. The three *trans* angles at the Re^I centre are close to 180° . All other angles subtended at the Re^I atom are close to 90° , ranging from 84.82 (11) to $95.20 (17)^{\circ}$ (Table 1), indicating a slightly distorted octahedral geometry for atom Re1. The Re–C bond lengths lie in the range 1.887 (6)–1.950 (6) Å. A six-membered ring is formed by the *P*,*N*-bidentate ligand and the Re^I atom; the ring is in a half-chair form. There are no hydrogen bonds in the crystal structure.

Received 11 August 2006 Accepted 18 August 2006

m2366 Li et al. • [ReCl(C₂₅H₂₃N₂P)(CO)₃]

© 2006 International Union of Crystallography

All rights reserved

Experimental

The 2-[*N*-benzyl-*N*-(diphenylphosphinomethyl)amino]pyridine ligand was prepared according to the literature method of Li *et al.* (2003). Complex (I) was obtained from the treatment of the above ligand (0.764 g, 20 mmol) with $\text{Re}(\text{CO})_5\text{Cl}$ (0.362 g, 10 mmol) in tetrahydrofuran (yield 0.867 g, 63%; m.p. 401–403 K). Single crystals of (I) were obtained by slow diffusion of diethyl ether into a dichloromethane solution.

Z = 4

 $D_x = 1.731 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.32\,\times\,0.28\,\times\,0.24$ mm

12176 measured reflections

5310 independent reflections

3899 reflections with $I > 2\sigma(I)$

 $\mu = 4.80 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.038$

 $\theta_{\rm max} = 26.4^{\circ}$

Crystal data

$[\operatorname{ReCl}(C_{25}H_{23}N_2P)(CO)_3]$
$M_r = 688.10$
Monoclinic, $P2_1/n$
a = 10.671 (5) Å
b = 20.789 (10) Å
c = 12.097 (6) Å
$\beta = 100.204 \ (7)^{\circ}$
$V = 2641 (2) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

$T_{\rm min} = 0.210, \ T_{\rm max} = 0.316$

Refinement

Refinement on F^2	H-atom parameters constrained		
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.0261P)^2]$		
$wR(F^2) = 0.069$	where $P = (F_0^2 + 2F_c^2)/3$		
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.002$		
5310 reflections	$\Delta \rho_{\rm max} = 0.82 \text{ e} \text{ Å}^{-3}$		
325 parameters	$\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$		

Table 1

Selected geometric parameters (Å, °).

Re1-C2	1.887 (6)	Re1-N2	2.253 (4)
Re1-C1	1.931 (6)	Re1-P1	2.4321 (15)
Re1-C3	1.950 (6)	Re1-Cl1	2.4687 (16)
C2-Re1-C1	90.9 (2)	C3-Re1-P1	176.77 (16)
C2-Re1-C3	87.9 (2)	N2-Re1-P1	85.60 (10)
C1-Re1-C3	89.9 (2)	C2-Re1-Cl1	95.09 (17)
C2-Re1-N2	179.2 (2)	C1-Re1-Cl1	173.97 (15)
C1-Re1-N2	89.15 (18)	C3-Re1-Cl1	90.48 (16)
C3-Re1-N2	91.33 (19)	N2-Re1-Cl1	84.82 (11)
C2-Re1-P1	95.20 (17)	P1-Re1-Cl1	88.24 (6)
C1-Re1-P1	91.02 (14)		

H atoms were positioned geometrically, with C-H = 0.93 or 0.97 Å, and were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 20472036).

References

- Bau, R., Fontal, B., Kaesz, H. D. & Churchill, M. R. (1967). J. Am. Chem. Soc. 89, 6374–6376.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, Q. S., Xu, F. B., Cui, D. D., Zeng, X. S., Song, H. B. & Zhang, Z. Z. (2003). Dalton Trans. pp. 1551–1557.
- Saillant, R. B., Barcelo, G. & Kaesz, H. D. (1970). J. Am. Chem. Soc. 92, 5739– 5741.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhang, Z. Z. & Cheng, H. (1996). Coord. Chem. Rev. 147, 1-39.